MECANICA DEL SOLIDO REAL (3º, Máquinas).	Curso 2009/10. 15-4-2010	
Nombro	NIO	

TEST Nº 4

Nº	Tema	Indicar si son verdaderas (V) o falsas (F) las siguientes afirmaciones
1	5	El problema elástico presenta 3 incógnitas de desplazamientos, 6 de deformaciones y 9 de tensiones
2	5	Para determinar desplazamientos, deformaciones y tensiones, se dispone de 6 ecuaciones
		estáticas, 6 ecuaciones cinemáticas y 6 ecuaciones físicas
3	5	En elasticidad lineal, el orden de aplicación de las fuerzas exteriores no influye en el estado
		resultante
4	5	El Principio de Saint-Venant es una consecuencia de la linealidad
5	5	La solución de tensiones del problema elástico debe de ser única
6	5	La solución de desplazamientos del problema elástico debe de ser única
7	5	Con fuerzas de volumen nulas, una solución de desplazamientos lineal con las coordenadas
		siempre verifica las condiciones de equilibrio
8	5	Un campo de tensiones que verifique las ecuaciones de compatibilidad, también verificará las
		condiciones de equilibrio interno
9	5	Al presentar sólo 3 incógnitas, el planteamiento local en desplazamientos siempre es más
L_		fácil que en tensiones
10	5	Un campo de desplazamientos cinemáticamente admisible es aquél en el que se cumplen las
44	_	condiciones de equilibrio
11	5	El Principio de los Trabajos Virtuales es una consecuencia de la modelización del sólido como un medio continuo
12	5	La condición de mínimo de la energía total del sistema es una consecuencia del equilibrio del
12	3	sólido frente a la acción de las fuerzas exteriores
13	5	La distribución de carga de la Figura 2 (Problema 17) es la única que en zonas alejadas da
.		lugar al mismo estado tensional que el que provoca la distribución de carga de la Figura 1
14	5	En la placa de la Figura 3 (Problema 19), las condiciones de contorno en desplazamientos son:
		$\vec{u}(0, y, z) = \vec{u}(x, 0, z) = 0$
15	5	En la placa de la Figura 3 (Problema 19), la componente w del desplazamiento en todos los
		puntos del plano z=e/2 es nula
16	5	En la placa de la Figura 2 (Problema 19), el campo de desplazamientos siguiente es
		cinemáticamente admisible: $u^* = C_1 xy$; $v^* = C_2 xy$; $w^* = C_3$
17	5	En la placa de la Figura 3 (Problema 19), el potencial de las fuerzas exteriores es independiente
		de las componentes v y w del desplazamiento
18	5	En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)
		se asume en cada elemento un campo de desplazamientos lineal
19	5	En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)
		en el nodo B se obtiene un desplazamiento vertical nulo
20	5	En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)
		los coeficientes a determinar de las funciones de forma son las fuerzas sobre los nodos

MECÁN

Nombre

V/F	
V	
٧	
V	
F	
V	
F	
٧	
٧	
F	
F	
F	
٧	
F	
٧	
٧	
F	
V	
V	
V	
F	

Nº	Tema
1	5
2	5
3	5
4	5
5	5
6	5
7	5
8	5
9	5
10	5
11	5
12	5
13	5
14	5
15	5
16	5
17	5
18	5
19	5
20	5

IICA DEL SOLIDO REAL (3º, Máquinas). Curso 2009/10. 15-4-201	10
Nº	

TEST Nº 4

Indicar si son verdaderas (V) o falsas (F) las siguientes afirmaciones	V/F
El problema elástico presenta 3 incógnitas de desplazamientos, 6 de deformaciones y 9 de	V
tensiones	
Para determinar desplazamientos, deformaciones y tensiones, se dispone de 6 ecuaciones	V
estáticas, 6 ecuaciones cinemáticas y 6 ecuaciones físicas	
El Principio de Superposición es una consecuencia de la linealidad	٧
Dos sistemas de carga estáticamente equivalentes dan lugar al mismo estado de tensiones y	V
de deformaciones en las zonas alejadas de los puntos de aplicación de cargas	"
La solución de desplazamientos del problema elástico debe de ser única	F
La solución de desplazamientos del problema elastico debe de ser unica	
La solución de deformaciones del problema elástico debe de ser única	٧
Cualquier campo de desplazamientos cuadrático con las coordenadas verifica las condiciones	F
de equilibrio interno	
El sistema de ecuaciones de compatibilidad en términos de tensiones incorpora las	V
condiciones de equilibrio interno	
El planteamiento local en tensiones presenta 9 incógnitas, por tanto, siempre supone más	F
dificultad que el planteamiento local en desplazamientos	
Un campo de desplazamientos cinemáticamente admisible es aquél en el que se cumplen las	٧
condiciones de continuidad y se respetan las condiciones de contorno en desplazamientos	
El Principio de los Trabajos Virtuales es una expresión del equilibrio entre las fuerzas exteriores	٧
y las fuerzas interiores	
El Teorema de la Energía Mínima es una consecuencia de la modelización del sólido como	F
un medio continuo	
Si las distribuciones de carga representadas en las Figuras 1 y 2 (Problema 17) tienen la	V
misma resultante de fuerza, dan lugar a idénticos estados tensionales en zonas alejadas	
El problema elástico en la placa de la Figura 3 (Problema 19) no tiene solución exacta debido a	V
la singularidad constituida por la carga q	
En la placa de la Figura 3 (Problema 19), el vector desplazamiento en todos los puntos del	F
plano z=e/2 es nulo	
En la placa de la Figura 3 (Problema 19), el campo de desplazamientos siguiente es	V
cinemáticamente admisible: $u^* = C_1 xy$; $v^* = C_2 xy$; $w^* = 0$	
En la placa de la Figura 3 (Problema 19), el potencial de las fuerzas exteriores es independiente	V
de las componentes v y w del desplazamiento	
En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)	F
se asume en cada elemento un campo de desplazamientos cuadrático	
En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)	٧
los coeficientes a determinar de las funciones de forma son los desplazamientos de los nodos	
En la modelización con dos elementos finitos triangulares indicada en la Figura 4 (Problema 20)	٧
en el nodo B se obtiene un desplazamiento vertical nulo	