PROBLEMA 6

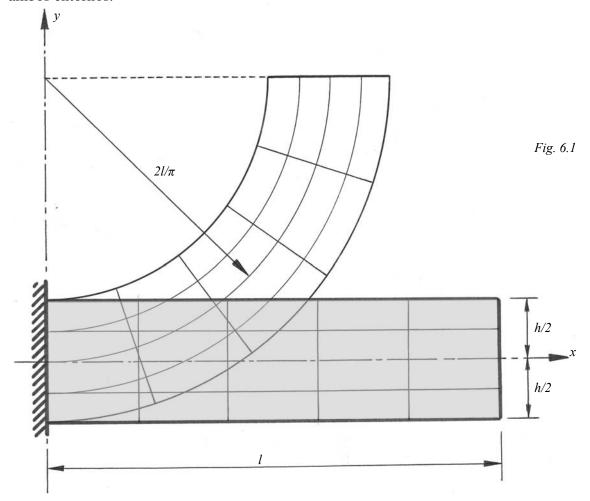
TEMA: MODELO CINEMÁTICO. A partir de un campo de desplazamientos plano, determinación de los tensores A y D. Transformación de entornos superficiales

Una pieza plana rectangular, hxl, empotrada en un extremo sufre la deformación que se indica a trazo fino en la Figura 6.1: las rectas y = cte se convierten en arcos de circunferencia concéntricos incrementando su longitud si están por debajo del eje x o disminuyéndola si están por encima, y las rectas x = cte giran sin deformación manteniéndose perpendiculares a las deformadas de las rectas y = cte. Las correspondientes ecuaciones de transformación son:

$$x' = \left(\frac{2l}{\pi} - y\right) sen \frac{\pi}{2l} x$$
; $y' = \frac{2l}{\pi} - \left(\frac{2l}{\pi} - y\right) cos \frac{\pi}{2l} x$; $z' = z$

Se pide:

- 1°) Componentes del vector desplazamiento \vec{u} . Comprobar que verifican las condiciones de contorno en el empotramiento
 - 2°) Tensor gradiente del campo de desplazamientos, A.
- 3°) En los puntos del empotramiento (x=0) y en los puntos del extremo libre (x=l), discutir si las componentes de A pueden considerarse infinitesimales (inferiores a la centésima) y para qué valores de la relación h/l
 - 4°) Tensor de deformación, D
- 5°) Para el caso: l=150mm, h=40mm, se considera un entorno superficial de forma cuadrada en los dos puntos de los vértices del extremo libre Q(150;-20)mm y T(150;20)mm. Determine y represente todos los movimientos experimentados por ambos entornos.



SOLUCIÓN

1°) Componentes del vector desplazamiento $\vec{u}(u, v, w)$

$$u = x' - x = \left(\frac{2l}{\pi} - y\right) sen \frac{\pi}{2l} x - x$$

$$v = y' - y = \frac{2l}{\pi} - \left(\frac{2l}{\pi} - y\right) \cos \frac{\pi}{2l} x - y$$

$$w = z' - z = 0$$

En el empotramiento (x=0) se tiene como condición de contorno, que todos los desplazamientos son nulos. Efectivamente, se comprueba que:

$$u(0, y) = v(0, y) = w(0, y) = 0$$

2°) Tensor gradiente del campo de desplazamientos

$$A = \nabla \vec{u} = \begin{bmatrix} \partial u/\partial x & \partial u/\partial y & \partial u/\partial z \\ \partial v/\partial x & \partial v/\partial y & \partial v/\partial z \\ \partial w/\partial x & \partial w/\partial y & \partial z/\partial z \end{bmatrix}$$

Sustituyendo las componentes del vector desplazamiento, se obtiene:

$$\frac{\partial u}{\partial x} = \left(1 - \frac{\pi}{2l}y\right)\cos\frac{\pi}{2l}x - 1 \qquad ; \qquad \frac{\partial u}{\partial y} = -sen\frac{\pi}{2l}x \qquad ; \qquad \frac{\partial u}{\partial z} = 0$$

$$\frac{\partial v}{\partial x} = \left(1 - \frac{\pi}{2l}y\right) sen \frac{\pi}{2l}x \qquad ; \qquad \frac{\partial v}{\partial y} = \cos\frac{\pi}{2l}x - 1 \quad ; \qquad \frac{\partial v}{\partial z} = 0$$

$$\frac{\partial w}{\partial x} = 0 \qquad ; \qquad \frac{\partial w}{\partial y} = 0 \qquad ; \qquad \frac{\partial w}{\partial z} = 0$$

3°) <u>Discusión sobre el carácter infinitesimal de A en el empotramiento</u>

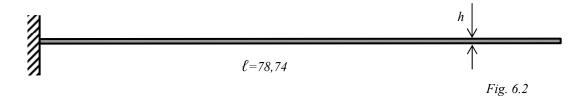
En el empotramiento (x=0) todas las componentes de A son nulas, salvo $\frac{\partial u}{\partial x} = -\frac{\pi}{2l}y$

que es máxima para $y = \pm h/2$, luego: $m \dot{a} x \left| \frac{\partial u}{\partial x} \right| = \frac{\pi}{4} \frac{h}{l}$, que es inferior a 0.01 para

$$h/l < 4.0.01/\pi = 0.0127 = 1/78.74$$

Por tanto, en el empotramiento, la única componente no nula del tensor gradiente del campo de desplazamientos, $\partial u/\partial x$, sólo puede considerarse infinitesimal (inferior a

0.01) cuando la longitud l de la pieza es igual o superior a 78,74 veces la altura h (en la Figura 6.2 se tiene una representación a escala)



Discusión sobre el carácter infinitesimal de A en el extremo libre

En el extremo libre (x=l) las componentes no nulas de A son: $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = -1$, que, obviamente, siempre son finitas.

La componente no nula restante es: $\frac{\partial v}{\partial x} = 1 - \frac{\pi}{2l} y$, que sólo será inferior a 0.01 para $y > (1-0.01) \cdot 2l / \pi$. Es decir, el primer punto para el cual la componente es infinitesimal será el vértice superior (y=h/2), lo que ocurrirá para h/l=1.26 (en la Figura 6.3 se tiene una representación a escala, se ha indicado a trazo fino la deformada)

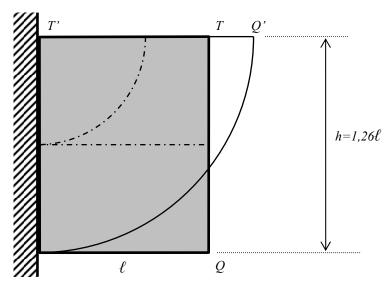


Fig. 6.3

4°) Tensor de deformación D

Como consecuencia del apartado anterior, la relación entre las componentes del vector desplazamiento, \vec{u} , y las componentes del tensor de deformación \vec{D} es no lineal para cualquier relación h/l, luego, como expresión del tensor deformación debe utilizarse:

$$D = \frac{1}{2} \left(A + A^T + A^T A \right) = \begin{pmatrix} \epsilon_{xx} & \epsilon_{xy} & \epsilon_{xz} \\ \epsilon_{xy} & \epsilon_{yy} & \epsilon_{yz} \\ \epsilon_{xz} & \epsilon_{yz} & \epsilon_{zz} \end{pmatrix}$$

Sustituyendo los desplazamientos en las expresiones de las componentes se obtiene:

$$\begin{aligned}
&\in_{xx} = \frac{\partial u}{\partial x} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial x} \right)^2 \right] = \frac{\pi}{2l} y \left(\frac{\pi}{4l} y - 1 \right) \\
&\in_{yy} = \frac{\partial v}{\partial y} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 \right] = 0 \\
&\in_{zz} = \frac{\partial w}{\partial z} + \frac{1}{2} \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \right] = 0 \\
&\in_{xy} = \in_{yx} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial y} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \right) = 0 \\
&\in_{yz} = \in_{zy} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} + \frac{\partial u}{\partial y} \frac{\partial u}{\partial z} + \frac{\partial v}{\partial y} \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \frac{\partial w}{\partial z} \right) = 0 \\
&\in_{xz} = \in_{zx} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} + \frac{\partial u}{\partial x} \frac{\partial u}{\partial z} + \frac{\partial v}{\partial x} \frac{\partial v}{\partial z} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial z} \right) = 0
\end{aligned}$$

5°) Vectores desplazamiento de los puntos de los vértices del extremo libre Q y T

Teniendo en cuenta que l=150mm y h=40mm, y particularizando la expresión de los desplazamientos del primer apartado, se obtiene:

Para el punto Q(150mm, -20mm): $u_O = -34,5mm$, $v_O = 115,5mm$, $w_O = 0$

Para el punto T(150mm, 20mm): $u_T = -74,5mm$, $v_T = 75,5mm$, $w_T = 0$

Deformaciones longitudinales en el entorno de Q y T

La expresión de la deformación longitudinal verdadera de un vector $d\vec{r} = dr \, \vec{n}$, de origen en un punto P es: $e(P, \vec{n}) = \ln \frac{dr'}{dr} = \frac{1}{2} \ln \left(1 + 2 \vec{n}^T D \vec{n}\right)$, luego, la longitud final del vector es: $dr' = \sqrt{1 + 2 \vec{n}^T D \vec{n}} \cdot dr$.

Teniendo en cuenta las expresiones de las componentes de la matriz D obtenidas en el apartado anterior, consideramos los puntos del entorno de Q y T señalados en la Figura 6.4:

Para el punto Q_x : dr=dx y $\vec{n}=-\vec{i}$, luego:

$$dx' = \sqrt{1 + 2 \in_{xx}} \cdot dx = \sqrt{1 + 2\frac{\pi}{2 \cdot 150} (-20) \left(\frac{\pi}{2 \cdot 150} (-20) - 1\right)} \cdot dx = 1,2094 dx$$

Para el punto Q_y : dr=dy y $\vec{n}=\vec{j}$, luego: $dy'=\sqrt{1+2\in_{yy}}\cdot dy=dy$

Para el punto T_x : dr=dx y $\vec{n}=-\vec{i}$, luego:

$$dx' = \sqrt{1 + 2 \in_{xx}} \cdot dx = \sqrt{1 + 2 \frac{\pi}{2 \cdot 150}} 20 \left(\frac{\pi}{2 \cdot 150} 20 - 1 \right) \cdot dx = 0.8178 dx$$

Para el punto
$$T_y$$
: $dr=dy$ y $\vec{n}=-\vec{j}$, luego: $dy'=\sqrt{1+2\in_{yy}}\cdot dy=dy$

Deformaciones angulares en el entorno de Q y T

La expresión de la deformación angular en el entorno de un punto P para dos direcciones inicialmente perpendiculares de vectores unitarios \vec{n}_s y \vec{n}_t es:

$$c(P, \vec{n}_s, \vec{n}_t) = arc sen \frac{2 \vec{n}_s^T D \vec{n}_t}{\exp(e_s + e_t)}$$

Particularizando para los puntos Q y T:

Punto
$$Q$$
: $\vec{n}_s = -\vec{i}$; $\vec{n}_t = \vec{j}$; $e_s = e(Q, -\vec{i}) = \ln \frac{1,2094 dx}{dx} = 0,19$; $e_t = e(Q, \vec{j}) = 0$

luego:
$$c(Q, -\vec{i}, \vec{j}) = arc \ sen \frac{2(-\vec{i})^T D \vec{j}}{\exp(e_s + e_t)} = arc \ sen \frac{-2 \in_{xy}}{\exp(0, 19 + 0)} = 0$$

Punto T:
$$\vec{n}_s = -\vec{i}$$
; $\vec{n}_t = -\vec{j}$; $e_s = e(T, -\vec{i}) = \ln \frac{0.8178 dx}{dx} = -0.2$; $e_t = e(T, -\vec{j}) = 0$

luego:
$$c(T, -\vec{i}, -\vec{j}) = arc \ sen \frac{2(-\vec{i})^T D(-\vec{j})}{\exp(e_s + e_t)} = arc \ sen \frac{2 \in_{xy}}{\exp(-0.2 + 0)} = 0$$

En la Figura 6.4 se han reflejado los movimientos hallados:

.- Los puntos P y Q experimentan, respectivamente, los desplazamientos:

$$\vec{u}_{O}(-34,5;115,5;0)$$
 y $\vec{u}_{T}(-74,5;75,5;0)$

- .- En el entorno del punto Q de lados paralelos a xy, el lado paralelo a x sufre un alargamiento, el lado paralelo a y no cambia de longitud y los ángulos de los vértices se mantienen rectos
- .- En el entorno del punto T de lados paralelos a xy, el lado paralelo a x sufre un acortamiento, el lado paralelo a y no cambia de longitud y los ángulos de los vértices se mantienen rectos.
- .- Ambos entornos experimentan un giro como sólido rígido de 90° en sentido antihorario. Al tratarse de un giro obviamente finito, no queda explícito en las matrices ${\pmb A}$ y ${\pmb D}$

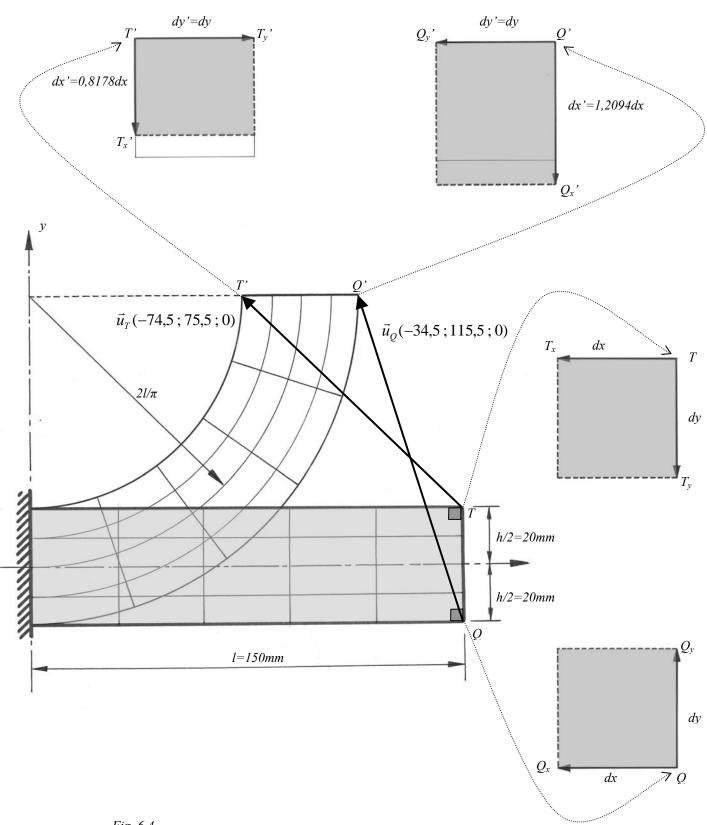


Fig. 6.4