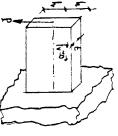

ELASTICIDAD Y RESISTENCIA DE MATERIALES PRIMER EXAMEN PARCIAL

CURSO 1996-97 21.01.97

CUESTIONES

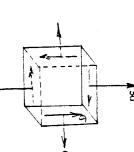
L. Admitiendo que la solución de tensiones de la placa de pequeño espesorty constantes elástica E y u de la figura es homogenea, determinar el campo de desplazamientos.

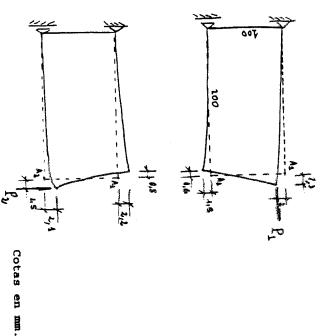

 ¿Qué condiciones globales debe cumplir la solución de un problema elástico?

Aplicación a la viga en voladizo mostrada en la figura si se propone la solución en tensión plana:

$$G_{hx} = -\frac{3P}{2h^{3}t} \times y$$

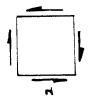
$$G_{hy} = 0$$


$$G_{xy} = \frac{1}{2} \frac{3P}{2h^{3}t} (y^{3} - h^{3})$$


En el estado tensional indicado en la figura, ¿qué porcentaje del potencial interno está vinculado al proceso de deformación plástica, según el criterio de von Mises, cuando para un determinado valor de Ø comienzanlas deformaciones anelásticas?

. .

Dato: coeficiente de Poisson: $\mu=0,25$



- Mediante dos experiencias de laboratorio se han calculado los desplazamientos mostrados en la figura de una placa elástica de espesor lmm.En la primera experiencia se aplicó una carga P_i en el punto A_i de 10 kN. En la segunda experiencia se aplicó una carga P_i ou valor desconocido en el punto A_2 . Se pide:
- 1°) Determinar P₁ aplicando el tecrema de reciprocidad de Maxwell-Betti.
- 2°) Determinar la matriz de coeficientes de influencia asociada al sistema de fuerzas constituído por P_1 , Y P_2 .
- 3°) Hallar el potencial interno de la placa cuando sobre ella actúan simultáneamente las cargas P_i y P_{i} .

5. La placa de la figura está sometida a un estado plano de tensiones. Determinar el valor de tensiones de cia el comportamiento anelástico según los criterios de Tresca, Von Mises y simplificado de Mohr.Razonar cuál de los tres criterios es en este caso el más conservador.

Datos: Get= 1500 kp/cm² Gec= 3000 Kp/cm²

