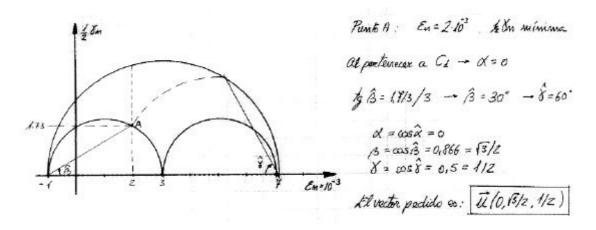
ELASTICIDAD Y RESISTENCIA DE MATERIALES. CURSO 1.999/2.000 EXAMEN FINAL DE SETIEMBRE. 5.09.2000

SOLUCIÓN CUESTIONES (Bloque 1)

1.-En un punto de un sólido elástico las deformaciones principales son: $\mathbf{e}_1 = 7 \cdot 10^{-3}$; $\mathbf{e}_2 = 3 \cdot 10^{-3}$; $\mathbf{e}_3 = -1 \cdot 10^{-3}$ Determinar el vector unitario de la dirección que corresponde a la deformación transversal unitaria mínima de entre las que presentan deformaciones longitudinales $\mathbf{e}_n = 2 \cdot 10^{-3}$, referida a un sistema de ejes coincidentes con las direcciones principales.



2.- La matriz de tensiones y el vector de fuerzas de volumen, referidos ambos a un sistema cartesiano xyz, son:

$$T = \begin{pmatrix} ax^2 & bxy & az^2 \\ bxy & ay^2 & byz \\ az^2 & byz & az^2 \end{pmatrix} \qquad f_V = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$$

Determinar las relaciones que deben existir entre las constantes *abc* y el coeficiente de Poisson **m**del material para que el estado de tensiones supuesto sea una posible solución de un problema elástico.

De los datos del enunciado se tiene:

$$\mathbf{s}_{nx}=ax^2$$
, $\mathbf{s}_{ny}=ay^2$, $\mathbf{s}_{nz}=az^2$, $\mathbf{t}_{yx}=bxy$, $\mathbf{t}_{zx}=az^2$, $\mathbf{t}_{zy}=byz$, $X=cx$, $Y=cy$, $Z=cz$

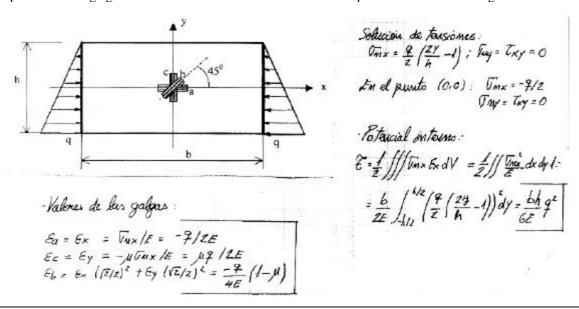
Aplicando las ecuaciones de equilibrio interno se obtiene:

$$2az+x(c+2a+b)=0$$

 $c+2(b+a)=0$
 $c+b+2a=0$

de donde se deduce: a=b=c=0

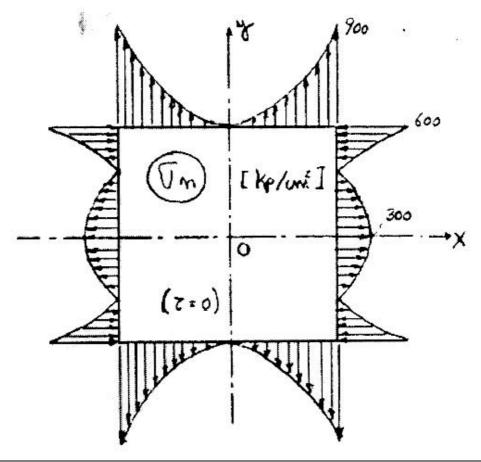
3.- Una placa delgada de espesor unitario y dimensiones bxh está sometida a una distribución lineal de carga tal como se indica en la figura. Siendo q el máximo valor de la carga y suponiendo conocidos los módulos de Young, E, y el coeficiente de Poisson, m del material de la placa, se pide determinar el potencial interno acumulado en la placa y los valores que marcan las galgas extensométricas situadas en el centro de la placa e indicadas en la figura.



4.- Una placa delgada cuadrada de *60x60cm*, está sometida a un estado tensional plano con fuerzas de volumen constantes. Para un sistema de referencia cartesiano *xy* centrado en el centro de la placa y con los ejes orientados según los bordes de la misma, la función de Airy es:

$$f = \frac{x^4}{12} - \frac{y^4}{12} + 150y^2$$

Viniendo expresadas las correspondientes tensiones en kp/cm^2 cuando las coordenadas se expresan en cm. Se pide representar las fuerzas de superficie sobre los bordes de la placa.



5.- La matriz de tensiones en un punto de un sólido elástico es

$$(T) = \begin{pmatrix} -30 & 30 & 30\sqrt{2} \\ 30 & 30 & 0 \\ 30\sqrt{2} & 0 & 30 \end{pmatrix} MPa$$

El material constituyente tiene un límite elástico a tracción de 150MPa y a compresión de 300MPa. Determine el correspondiente coeficiente de seguridad según los criterios de Rankine, Tresca, Von Mises y Mohr y dibujar en el diagrama de Mohr los círculos límite para cada criterio tomando como escala [10MPa°5mm].

Tonsiones principales:
$$G_1 = 60 \text{ MTa}$$
 $G_2 = 30 \text{ MTa}$ $G_3 = -60 \text{ MTa}$

britorio de Rankime: $M = \frac{Get}{V_1} = \frac{150}{60} = 2.5$

britorio de Trosca: $M = \frac{Get}{U_1 - V_3} = \frac{150}{120} = 1.25$

Critorio de Von Auseo: $M = \frac{GFet}{V_1 - V_2 - V_3} + (G_2 - G_3)^2 + (G_3 - G_4)^2$

Critorio de Modri: $M = \frac{Get}{U_1 - V_2 - V_3} + (G_3 - G_4)^2 = 1.66$

Para ceda critecio, el circulo limite corta al eje de abasas del diagrama de Hohr en (M Vs., MVs.), buego:

